A note on quasi-isomorphism of torsion free abelian groups of finite rank

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Classification of Torsion-free Abelian Groups of Finite Rank up to Isomorphism and up to Quasi-isomorphism

We prove that the isomorphism and quasi-isomorphism relations on the p-local torsion-free abelian groups of fixed finite rank n are incomparable with respect to Borel reducibility.

متن کامل

On controllers of prime ideals in group algebras of torsion-free abelian groups of finite rank

Let RA be a group ring of an abelian group A and let I be an ideal of RA . We say that a subgroup B of A controls I if I = (I ∩ RB)RA. The intersection c(I) of all subgroups of A controlling I is said to be the controller of the ideal I ; c(I) is the minimal subgroup of A which controls the ideal I . The ideal I is said to be faithful if I = A ∩ (1 + I) = 1. In theorem 4 we consider some method...

متن کامل

On the complexity of the classification problem for torsion-free abelian groups of finite rank

In 1937, Baer [5] introduced the notion of the type of an element in a torsion-free abelian group and showed that this notion provided a complete invariant for the classification problem for torsion-free abelian groups of rank 1. Since then, despite the efforts of such mathematicians as Kurosh [23] and Malcev [25], no satisfactory system of complete invariants has been found for the torsion-fre...

متن کامل

Abelian Rank of Normal Torsion-free Finite Index Subgroups of Polyhedral Groups

Suppose that P is a convex polyhedron in the hyperbolic 3-space with finite volume and P has integer ( > 1) submultiples of it as dihedral angles. We prove that if the rank of the abelianization of a normal torsion-free finite index subgroup of the polyhedral group G associated to P is one, then P has exactly one ideal vertex of type (2,2,2,2) and G has an index two subgroup which does not cont...

متن کامل

Borel superrigidity and the classification problem for the torsion-free abelian groups of finite rank

In 1937, Baer solved the classification problem for the torsion-free abelian groups of rank 1. Since then, despite the efforts of many mathematicians, no satisfactory solution has been found of the classification problem for the torsion-free abelian groups of rank n ≥ 2. So it is natural to ask whether the classification problem for the higher rank groups is genuinely difficult. In this article...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1965

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1965.100648